NEW BOUSSINESQ SYSTEM FOR NONLINEAR WATER WAVES
نویسندگان
چکیده
منابع مشابه
Derivation of a viscous Boussinesq system for surface water waves
In this article, we derive a viscous Boussinesq system for surface water waves from Navier-Stokes equations. So, we use neither the irrotationality assumption, nor the Zakharov-Craig-Sulem formulation. During the derivation, we find the bottom shear stress, and also the decay rate for shallow (and not deep) water. In order to justify our derivation, we check it by deriving the viscous Korteweg-...
متن کاملA fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves
Fully nonlinear extensions of Boussinesq equations are derived to simulate surface wave propagation in coastal regions. By using the velocity at a certain depth as a dependent variable (Nwogu 1993), the resulting equations have significantly improved linear dispersion properties in intermediate water depths when compared to standard Boussinesq approximations. Since no assumption of small nonlin...
متن کاملA fully nonlinear Boussinesq model for surface waves
A Boussinesq-type model is derived which is accurate to O(kh) 4 and which retains the full representation of the fluid kinematics in nonlinear surface boundary condition terms, by not assuming weak nonlinearity. The model is derived for a horizontal bottom , and is based explicitly on a fourth-order polynomial representation of the vertical dependence of the velocity potential. In order to achi...
متن کاملOn a Class of Boussinesq Equations for Shallow Water Waves
The Euler’s equations describing the dynamics of capillarygravity water waves in two-dimensions are considered in the limits of small-amplitude and long-wavelength under appropriate boundary conditions. Using a double-series perturbation analysis, a general Boussinesq type of equation is derived involving the small-amplitude and longwavelength parameters. A recently introduced sixth-order Bouss...
متن کاملMechanical Balance Laws for Boussinesq Models of Surface Water Waves
Depth-integrated long-wave models, such as the shallow-water and Boussinesq equations, are standard fare in the study of small amplitude surface waves in shallow water. While the shallow-water theory features conservation of mass, momentum and energy for smooth solutions, mechanical balance equations are not widely used in Boussinesq scaling, and it appears that the expressions for many of thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Coastal Engineering Proceedings
سال: 2012
ISSN: 2156-1028,0589-087X
DOI: 10.9753/icce.v33.waves.4